Skip to content

CartPole

CartPole

Bases: EnvType

This class represents the CartPole environment.

__init__(algo=Algo.PPO, algo_param={'policy': 'MlpPolicy', 'verbose': 0, 'device': 'cpu'}, prompt={'Goal': 'Balance a pole on a cart', 'Observation Space': 'Num Observation Min Max\n 0 Cart Position -4.8 4.8\n 1 Cart Velocity -Inf Inf\n 2 Pole Angle ~ -0.418 rad (-24°) ~ 0.418 rad (24°)\n 3 Pole Angular Velocity -Inf Inf'})

Initializes the CartPole environment.

Parameters:

Name Type Description Default
algo Algo

The algorithm to use for training.

PPO
algo_param dict

The parameters for the algorithm.

{'policy': 'MlpPolicy', 'verbose': 0, 'device': 'cpu'}
prompt dict | str

The prompt for the environment.

{'Goal': 'Balance a pole on a cart', 'Observation Space': 'Num Observation Min Max\n 0 Cart Position -4.8 4.8\n 1 Cart Velocity -Inf Inf\n 2 Pole Angle ~ -0.418 rad (-24°) ~ 0.418 rad (24°)\n 3 Pole Angular Velocity -Inf Inf'}

__repr__()

String representation of the CartPole environment.

Returns:

Name Type Description
str

String representation of the CartPole environment.

objective_metric(states)

Objective metric for the CartPole environment. Calculates a score for the given state on a particular observation of the CartPole environment.

:param state: The state of the CartPole environment. :return: a table of tuples containing the string name of the metric and the value of the metric.

success_func(env, info)

Cartpole Evaluation Function

Parameters:

Name Type Description Default
env

gym.Env : Environment

required
info

dict : Information from the environment

required

Returns:

Name Type Description
bool tuple[bool | bool]

True if the episode is truncated, False otherwise