
VIRAL: Vision-grounded Integration
for Reward design And Learning

Valentin Cuzin-Rambauda, Emilien Komlenovica and Alexandre Faurea

aUniversity Claude Bernard Lyon 1, France

Abstract. The issue of alignment between humans and machines is
one of the most pressing concerns today. The goal of reinforcement
learning is to maximize a reward function, which makes it suscepti-
ble to the consequences of a poorly designed reward function. Recent
research has shown that large language models (LLMs) for reward
generation can outperform human performance in this area. Thus, we
propose VIRAL, a program for generating reward functions through
the use of open-source, multi-modal LLMs. VIRAL autonomously
generates and refines reward functions for a given environment with
a specific prompt. VIRAL offers several features, including: gener-
ation from a simple prompt, generation from an annotated image,
automatic improvement of the function with or without human feed-
back, and a description generated by a video LLM to explain the
agent’s policy in the video. We measure our method in five Gym-
nasium environments, enabling rapid learning of new behaviors and
creating reward functions aligned with user intent. Documentation of
the project is available here: https://viral-ucbl1.github.io/

1 Introduction
Creating effective reward functions is one of the hardest parts of
working with reinforcement learning (RL). A poorly designed re-
ward can send an agent down the wrong path, while a well-crafted
one can speed up learning and guide the agent towards behaviors that
match our expectations. The problem is that designing good rewards
often takes a lot of manual effort and expertise, especially in robotic
environments.

Thanks to their effectiveness in addressing a variety of problems,
large language models (LLMs) are being utilized in robotics, partic-
ularly for RL. One of the first approaches [2], using natural language
processing (NLP) techniques — such as RNNs and word encoding
— to construct reward signals, demonstrated significant effectiveness
in Atari games. An early method [4] that employed LLMs for reward
generation used GPT-3 as a binary reward signal, but this approach
can only be applied to a limited number of environments. More re-
cently [7, 12, 14], the use of GPT-4 to generate code for reward func-
tions has shown its competitiveness and its ability to produce effec-
tive reward functions.

The use of open-source LLMs with fewer parameters [3] is seem-
ingly becoming competitive with GPT-4 and other large models. This
trend is helping democratize the local use of LLMs or their deploy-
ment on small servers. LLMs using vision (LVLMs) [6, 8] that accept
images allow users to communicate in ways beyond just text input.
The combination of text and image input clarifies the user’s intent,
enabling the LLM to better grasp the meaning of the request. Finally,
while still recent, LVLMs that use video as user input have shown

promising results [5]. These LVLMs can describe a video, particu-
larly the movements of objects within the scene.

In this paper, we present VIRAL: Vision-grounded Integration for
Reward design And Learning. VIRAL is a framework to design re-
wards functions from simple users prompts.

The contributions presented in this paper are:

• A new way to design reward functions using simple natural lan-
guage input, or annotated images.

• An automated pipeline to refine reward functions, augmented with
human feedback or video description from a LVLM.

• A flexible, modular setup that can scale and adapt to different RL
problems based on Gymnasium[13].

• A competitive approach that highlights the power of lighter LLMs.
• Quick inference achieved through multiprocessing.

Inspired by the state of the art, particularly by these latest papers[7,
14], we distinguish ourselves in several ways.

For the user’s description of the environment, EUREKA[7] uses
the environment’s code, while Text2Reward[14] employs an abstrac-
tion of the environment through Pydantic class definitions. We have
chosen to describe the environment solely through its observations,
as outlined in the Gymnasium documentation. This approach enables
the LLM to capture the necessary information for coherent genera-
tion while simplifying the implementation for the user.

Furthermore, we introduce two innovative vision features: the first
is the use of annotated images, such as in Figure 3, to illustrate the
goal for the first generation through drawings, and the second is a
video description of the learned policy within a self-refining loop.

This paper is structured to detail the inner workings of VIRAL in
Section 2, present our results in Section 3, and conclude the discus-
sion in Section 4.

2 Architecture

Figure 1. The VIRAL pipeline. The system begins with an environment
description and iteratively generates and refines reward functions.



2.1 User Input Parameters

To effectively use our framework, users are required to provide a set
of specific inputs (see Figure 1.1). The first input is the environment,
any environment compatible with Gymnasium can be seamlessly in-
tegrated with VIRAL. The user constructs a prompt in JSON format,
which includes the objective to be achieved and a detailed description
of the environmental observations. Additionally, the prompt can in-
clude the path to an image annotated in red (with arrows, text, areas,
etc.) (see Figure 3). The second input is a success function, which
must be a user-defined function tailored to their environment tailored
to their environment. This function determines how success is man-
ifested within the specific context of the task. Finally, users need to
provide objective metrics. These metrics serve to enhance the feed-
back provided to the LLM during the refinement phase.

2.2 Initial Generation

We have chosen to implement a zero-shot user prompt. Although
studies have demonstrated the effectiveness of few-shot prompting
[1], we believe that a prompt without examples offers users greater
simplicity and scalability in any environment. The image will be
charged to the LVLM and used as a reference to better capture the
information about the described environment and the objective to be
achieved. Indeed, the LVLM has a better design for the reward func-
tion that aligns with the goal in this case.

Among the strategies employed to enhance zero-shot generation,
one particularly effective method is step-back prompting [16]. (see
Figure 1.2). Thus, we have implemented a collaboration between two
instances of LLM (Ollama Chat), where one acts as the critic provid-
ing additional context to the specialized code actor, who will generate
the reward function. This methodology has led us to improvements
in the generated function (see Figure 1.3).

To avoid potential errors, the generated code is automatically
checked for syntax errors and logical issues (see Figure 1.4). If any
errors are found, they are sent back to the model via a secondary
prompt, allowing it to revise its output. This process helps the model
improve over time and reduces the chances of producing invalid out-
puts.

2.3 Learning a Policy

The generated reward function takes the observations as parameters,
along with two boolean values indicating whether there is a success
and whether there is a failure. Once the initial reward function is
generated, we have the agent search for its policy using the specified
learning algorithm to stable baseline 3 [10]. We use two algorithms
for our tests: Deep Q Network [9](DQN) and Proximal Policy Op-
timization [11](PPO). PPO is a highly popular algorithm due to its
versatility across a wide range of environments, particularly those
with continuous observations or actions, as well as its ease of param-
eter tuning and efficiency.

During training (see Figure 1.5), rewards and observations are re-
trieved, and if the user wishes to, they can implement objective metric
functions that take these observations and return a dictionary of use-
ful objective metrics for this environment. During testing, we eval-
uate based on the Success Rate defined by the user and specific to
each environment. These objectives serve two purposes: to compare
the performance of the generated reward function with the baseline
"legacy" reward function and to compare multiple custom reward
functions when they are generated in parallel.

2.4 Refined Reward

The refinement process unfolds as follows:

1. Human feedback: (see Figure 1.6) The training of the agent
is visualized in a video, allowing a human observer to analyze
the agent’s behavior. The observer provides annotations or com-
ments on desirable or undesirable behaviors. These insights are
integrated into the system to refine the reward function, ensuring
better alignment with user-defined goals.

2. Video observation by an LVLM: (see Figure 1.6) As an alterna-
tive or complement to human feedback, VIRAL enables an LVLM
to directly observe the training video. The LVLM used is LLAVA-
VIDEO, and its role is to analyze the visual sequence to identify
problematic or misaligned behaviors. The generated response will
focus on the agent’s movement and will describe the agent’s posi-
tions in space. These detailed observations are used to enhance the
reward function without human intervention, allowing for a more
autonomous process to address any alignment issues.

3. Automated critique and improvement: (see Figure 1.7) The
critic LLM analyzes the training results by leveraging collected
statistics. This LLM identifies potential reasons why the reward
function underperformed. These observations are passed to the ac-
tor LLM, which creates an improved reward function, addressing
the identified weaknesses. The goal is to propose a function that
enhances agent performance and aligns more closely with the in-
tended objectives.

These methods are combined into an iterative approach: in each
cycle, the refined reward function is evaluated and compared to the
previous version to ensure it provides significant improvement. If it
does not, the refinement process is repeated until the desired perfor-
mance level is achieved.

By combining artificial intelligence with vision capabilities, VI-
RAL delivers optimized reward functions. This iterative and modular
process provides flexibility and adaptability, making it suitable for a
wide range of reinforcement learning environments and surpassing
traditional reward function design methods.

3 Experiments and Results
During our work, we chose to use Qwen2.5-Coder as the actor due to
its performance being comparable to that of GPT-4, making it a reli-
able choice for this role. For the critic, we chose Llama3.2-Vision [8],
as it is lightweight, open-source, and well-suited for our framework’s
requirements. Nevertheless, our framework is flexible and allows the
use of any LLM available through Ollama. For video description
tasks, we implemented a dedicated server that runs llava-video-7b-
qwen2 [15].

In our experiments, we used a selection of environments from the
Gymnasium toolkit to evaluate the performance of our generated re-
ward functions. We started our work with the classic environments of
Cart Pole and Lunar Lander, which allowed us to test fundamental
control and optimization strategies in simple yet challenging scenar-
ios. Next, we explored the Highway environment, where a vehicle
must navigate a multi-lane road, avoiding collisions and optimizing
its speed while adhering to driving rules. Given the increasing rele-
vance of autonomous vehicles, we considered it essential to include
this environment in our study as it addresses modern-day challenges
in automation and decision-making. Finally, we incorporated two
robotics-focused environments, Hopper and Swimmer, both derived
from the MuJoCo physics simulator. These environments played a



crucial role in evaluating the efficiency of our reward function in
comparison to Gymnasium’s, as they allowed us to investigate in-
tricate robotic locomotion and control systems.

All our project results are available in CSV format in our GitHub
repository.

3.1 Comparison of efficiency against Gymnasium
reward functions

In this section, we evaluate the efficiency of our method by compar-
ing the learning curves obtained using our generated reward function
with those derived from the baseline (legacy) reward function. These
comparisons are conducted in the CartPole environment, which is
particularly well-suited for analyzing learning speed and stability.

We compare in Figure 2 rolling means over 10 runs of learning to
demonstrate that our approach enables the agent to learn faster and
achieve superior performance compared to using the baseline reward
function. The results show a quicker convergence of the normalized
cumulative reward, whereas the gymnasium baseline reward function
remains significantly less effective throughout training. Through Ta-
ble 1, we observe that the policy learned with our reward function
outperforms that of Gymnasium. Additionally, we can see that the
cart moves slightly more on average, resulting in a more stable pole
overall.

These rewards functions were discovered using PPO and qwen2.5-
coder:32b as an actor/critic, with this simple goal prompt: "Create a
reward function for the CartPole environment that encourages keep-
ing the pole upright for as long as possible."

Figure 2. 10 runs of PPO with our reward function and with the reward
function of Gymnasium

Table 1. Comparison between legacy reward and ours (over 10 runs)

reward function cart position diff pole angle diff success rate

gymnasium 0.281202 0.064587 0.58700
ours 0.308173 0.062499 0.85300

For the fast highway environment using DQN, we have better suc-
cess rates than the basic function 7 times out of 10, using only
qwen2.5-coder in version 7b for the critic and actor. On these 10
runs, we obtain a median success rate of 0.78. The goal prompt was:
"Control the ego vehicle to reach a high speed without collision."

These results highlight the capability of our method to generate
tailored and efficient reward functions, significantly reducing the
training time needed to achieve complex objectives.

3.2 Aligned

By including an annotated image with the very first prompt, the
learned policy performs as the user desires. This is evident with
the swimmer example, where we provide an annotated Figure3 and
achieve the desired policy Figure4.

Figure 3. Annotated image given to Llama3.2-vision

Figure 4. The policy discovered thanks to annotated images.

3.3 Behaviors

For the LunarLander environment, we successfully trained the agent
to perform a novel behavior: stationary flight. This was achieved
using a single annotated image and the following prompt: "Do not
crash but do not land; I want to make a stationary flight."

For the Hopper environment, with this prompt: "Control the Hop-
per to move in the forward direction, take care to don’t fall, make the
highest jump", we taught it to jump higher while moving forward,
resulting in a behavior that achieves better speed than the baseline.

4 Conclusion
In this study, we demonstrated that our approach outperformed
legacy reward functions in terms of performance and flexibility. Our
results showed that agents were able to learn new behaviors based
on simplistic sketches, highlighting the robustness of our learning
methodology. Furthermore, the integration of video feedback or hu-
man feedback into our experiments enabled agents to better align
with the intended objectives, providing a deeper understanding of
the desired behaviors.

Looking forward, an intriguing avenue to explore would be the
adaptation of pre-existing policies to learn new behaviors. This ap-
proach could pave the way for greater policy generalization and
smoother transitions between different sets of complex tasks.



5 Citations and references
References

[1] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al. Language mod-
els are few-shot learners. Advances in neural information processing
systems, 33:1877–1901, 2020.

[2] P. Goyal, S. Niekum, and R. J. Mooney. Using natural lan-
guage for reward shaping in reinforcement learning. arXiv preprint
arXiv:1903.02020, 2019.

[3] B. Hui, J. Yang, Z. Cui, J. Yang, D. Liu, L. Zhang, T. Liu, J. Zhang,
B. Yu, K. Dang, et al. Qwen2.5-coder technical report. arXiv preprint
arXiv:2409.12186, 2024.

[4] M. Kwon, S. M. Xie, K. Bullard, and D. Sadigh. Reward design with
language models. arXiv preprint arXiv:2303.00001, 2023.

[5] B. Lin, Y. Ye, B. Zhu, J. Cui, M. Ning, P. Jin, and L. Yuan. Video-llava:
Learning united visual representation by alignment before projection.
arXiv preprint arXiv:2311.10122, 2023.

[6] H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024.

[7] Y. J. Ma, W. Liang, G. Wang, D.-A. Huang, O. Bastani, D. Jayara-
man, Y. Zhu, L. Fan, and A. Anandkumar. Eureka: Human-level
reward design via coding large language models. arXiv preprint
arXiv:2310.12931, 2023.

[8] Meta. Llama-3.2-11b-vision-instruct. https://huggingface.co/
meta-llama/Llama-3.2-11B-Vision-Instruct, 2024.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller. Playing Atari with Deep Reinforcement Learn-
ing, Dec. 2013.

[10] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementa-
tions. Journal of Machine Learning Research, 22(268):1–8, 2021. URL
http://jmlr.org/papers/v22/20-1364.html.

[11] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Prox-
imal Policy Optimization Algorithms, Aug. 2017.

[12] J. Song, Z. Zhou, J. Liu, C. Fang, Z. Shu, and L. Ma. Self-refined
large language model as automated reward function designer for deep
reinforcement learning in robotics. arXiv preprint arXiv:2309.06687,
2023.

[13] M. Towers, A. Kwiatkowski, J. Terry, J. U. Balis, G. De Cola, T. Deleu,
M. Goulão, A. Kallinteris, M. Krimmel, A. KG, et al. Gymnasium:
A standard interface for reinforcement learning environments. arXiv
preprint arXiv:2407.17032, 2024.

[14] T. Xie, S. Zhao, C. H. Wu, Y. Liu, Q. Luo, V. Zhong, Y. Yang, and T. Yu.
Text2reward: Reward shaping with language models for reinforcement
learning. In The Twelfth International Conference on Learning Repre-
sentations, 2024.

[15] Y. Zhang, J. Wu, W. Li, B. Li, Z. Ma, Z. Liu, and C. Li. Video instruction
tuning with synthetic data. arXiv preprint arXiv:2410.02713, 2024.

[16] H. S. Zheng, S. Mishra, X. Chen, H.-T. Cheng, E. H. Chi, Q. V. Le, and
D. Zhou. Take a step back: Evoking reasoning via abstraction in large
language models. arXiv preprint arXiv:2310.06117, 2023.


